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ABSTRACT 

In this paper we consider spectral expansions of functions from Nikol'skii classes 

( ),a N
pH R  related to selfadjoint extensions of elliptic differential operators ( )A D  of 

order m  in .N
R  We construct a continuous function from Nikol'skii class with 

< ,pa N such that the Riesz means of spectral expansion of which diverge at the 

origin. This result demonstrates sharpness of the condition >pa N  obtained earlier 

by Alimov (1976) for uniform convergence of spectral expansions, related to elliptic 
differential operators.     

  

Keywords: Fourier integral, spectral expansions of the differential operators, spectral 
function, Riesz means. 

 

 

INTRODUCTION 

Let G  be an arbitrary domain in .NR  In 2 ( )L G  consider a formally 

self-adjoint and semi-bounded elliptic differential operator ( , )A x D  with 

smooth coefficients. For any 2 ( )f L G∈  we denote its Riesz means of order 

0s ≥  by ( ).sE f xλ  The aim of this paper is to investigate the problem of 

uniform convergence of these means. In Alimov (1976) considered the Riesz 

means of the functions from Nikolskii classes ( )
a

pH G  (for definition see 

Nikolskii (1969)). He proved that if numbers > 0a  and 0s ≥  satisfy the 

conditions  
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1
, > , 1,

2

N
a s pa N p

−
+ ≥ ≥                           (1) 

 then for any function ( )
a

pf H G∈  with compact support the Riesz means 

( )sE f xλ  converge to the function ( )f x  uniformly on any compact set 

.K G⊂  
 

For the Laplace operator in the case = 0s  Il'in obtained the sharp 

conditions (1) for the uniformly convergence of spectral expansions for 
functions from Sobolev spaces. Later this result was extended to the 

Liuoville spaces by Il'in and Moiseev in (Il'in and Moiseev (1971)) and to 

the Nikolskii spaces by Il'in and Alimov in (Il'in and Alimov (1971)). The 
problem of the uniformly convergence of the spectral decompositions of the 

Laplace operator in the critical case =pa N  is investigated by Alimov in 

(Alimov (1979)), where he proved uniformly convergence of the Riesz 

means ( )sE f xλ  for the continuous function ( )f x  from Sobolev space 

( )
a

pW G  under the conditions > ( 1) / 2, 1.a s N p+ − ≥  

 

The critical case =pa N  was investigated in (Alimov (1979)) for 

the spectral decompositions of the Laplace operator, and the uniformly 

convergence of the Riesz means ( )sE f xλ  is established when the being 

expanded function is continuous and belongs to the Sobolev space ( )
a

pW G  

and the first inequality in (1) is strong. In this connection there arises a 

natural question: If we replace the condition pa N≥  with < ,pa N  and 

request that the function ( )
a

pf H G∈  is continuous, then whether or not the 

uniformly convergence of the Riesz means of the spectral decomposition of 

the general elliptic operator remains valid (possibly at the expense of 

increasing the a s+ ). In this paper we give a negative answer to this 

question. 

 

 

PROBLEM FORMULATION 

For a semibounded elliptic operator ( )A D  with constant coefficients 

in case of = NG R  the decomposition unity is defined by  
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( , )

( )<

ˆ( ) = (2 ) ( ) ,
N i x

A

E f x f e d
ξ

λ

ξ λ

π ξ ξ−

∫  

where 
| |

( ) =
m

A a α
α

α

ξ ξ
≤
∑  is the symbol of the operator ( ),A D  and f̂  denotes, 

Fourier transformation of .f  Then the Riesz means of order s  of the Eλ  is 

defined by  

 

0

( ) = (1 ) ( ),
s s

t

t
E f x dE f x

λ

λ

λ
λ

−∫                                 (2) 

 

where 0λ  is lower bound of the ( ).A D  

 

The main result of this paper is the following 

 

Theorem 1.  Let 
1

0 , 1, <
2

N
s p ap N

−
≤ ≤ ≥  (here sa +  is arbitrary). 

Then there exists a continuous function ( )f x  from the class ( )
a N

pH R  such 

that  

 

| (0) |= .lim
sE fλ

λ→∞
+∞                                        (3) 

  

Thus Theorem in particular states that if < ,ap N  then even the inequality 

> ( 1) / 2a s N+ −  can not guarantee the uniformly convergence of the 

spectral expansions of the elliptic differential operators. It should be noted 

that using an explicit form for the kernel of sE fλ  via Bessel function, in case 

of the Laplace operator this theorem was proved by the first author (Ashurov 

(1990)). The operators ( )A D  considered in the present paper have an 

arbitrary order and are not necessarily homogenous. Moreover, in our case 

the surface { ( ) =1}a ξ  can be not convex, where 
| |=

( ) =
m

a a α
α

α

ξ ξ∑  denotes 

the principle symbol of the operator ( ).A D  Whereas for the Laplace 

operator it is a sphere and therefore it is a strictly convex set. So in the case 
of an arbitrary elliptic operator we have the same result as for Laplace 

operator.  
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For the latest investigations related to the convergence problems of 
the spectral expansions of the elliptic differential operators (including the 

case of the Laplace operator) we refer the readers to (Ashurov and Anvarjon 

(2010); Ashurov et al. (2010); Anvarjon (2010); Carbery and Soria (1988); 
Tao (2002); Alimov (2006); Carbery and Soria (1997)). The best general 

reference here is Alimov et al. (1992). 

 

 

RESULTS AND DISCUSSION 

Let us recall the Nikol'skii class of functions, which is denoted by 

( ),
a N

pH R  where = ,a l κ+ l -positive integer and 0 < 1κ ≤ , 1p ≥ . We say 

that the function ( )
N

pf L R∈ , 1p ≥ , belongs to the ( )
a N

pH R , if for any 

Nh R∈  and 1 2= ( , ,..., )Nα α α α , | |= lα , we have  

 
2

( )
( ) || | | ,h N

L R
p

f x c hα κ∆ ∂ ≤||  

 

where 

...
1 2

1 2
1 2

=
...

N

N
Nx x x

α α α
α

αα α

+ + +
∂

∂
∂ ∂ ∂

 and 2 ( ) = ( ) 2 ( ) ( ).h f x f x h f x f x h∆ + − + −  

 

The norm in ( )
a N

pH R  is defined by  

 
2

, ( ) ( )
| |=

|| =|| || | | ( ) || ,supp a N h NL R L R
p phl

f f h f xκ α

α

−+ ∆ ∂∑|| ||  

 

If < 1,κ then the second order difference in this representation can 

be replaced with the first order difference ( ) = ( ) ( ),h f x f x h f xα α α∆ ∂ ∂ + − ∂  

for more properties see (Nikolskii (1969)). 

 

Let Ω  be a domain on the unit sphere. We define a set   

 

1 2 1 2( , , ) = { : <| |< ,( )/ | | }.K x b b y b x y b x y x yΩ − − − ∈Ω   

 

Let ( ), ( )ψ ω ϕ ω  and ( )φ ω  be smooth functions defined on unit sphere 1.NS −   
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Let 
1/= >1,mµ λ 0

1
= ( ),

2 2

N
s

π
ϕ

−
−  then we define 

 
1

1 1 0= (lnln )( ( ) ( )) ,b µ β ϕ µψ ω φ ω −+ − +
 

 
1

2 0= ( )( ( ) ( ))b ln bµ µψ ω φ ω −+ + , 

 

where 1 1= ( )β β µ  and 2 2= ( )β β µ  are numbers such that  

 

1(lnln ( )) = 1cos µ β µ+  and 2 0(ln ( ) ) = 1cos µ β µ ϕ+ + . 

 

It is further assumed that 1 20 , < 2 .β β π≤  We introduce the function 

 

0 1 2

1 2

( ( ) ( ) ), ( , ),

( , ) = 0 , ( / (2 ), / (2 )).

cos t t if t b b

g t if t b bµ

µ ψ ω φ ω ϕ ω

ω π µ π µ

+ + ∈ ∈Ω


∈ − +



We extend ( , )g tµ ω  smoothly to the rest of the 1 2(0, , )
2 2

K b b
π π

µ µ
Ω − + , so 

we have | |
| ( , ) | , 0,g t C C

α α
µ ω µ∂ ≤ >  uniformly in t  and ω  for all 

0 .Nα≤ ≤  
 

Let ( )χ ω  be smooth function defined on unit sphere 1NS −  with 

( ) .supp χ ⊂ Ω  We consider a function  | | ( )
( ) = (| |, ) ( ) ,

i y
f y g y e

ϕ ω
µ µ ω χ ω −  

where = / | | .y yω ∈Ω  

 

Lemma 1.  If 0 < ,a N≤  then for any > 1µ  we have  

 

1, ( ) , > 0.
a N N

af A ln Aµ µ µ−≤|| ||  

  

Proof. In the definition of the 1

a
H  norm we take difference of first order of 

.f
α

µ∂  It is not hard to see that  

 

1

( )
1

( ) .N
N

L R
f c lnµ µ µ−≤|| ||  
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The second summand in  
 

1, ( ) ( )
1 1| |= 1

=|| | | ,supa N h N
L R L R

hN

f f h fκ α
µ µ µ

α

−

−

+ ∆ ∂∑|| || || || ||

 
 

we divide into two parts as follows  

 

( ) ( )1 11 1| |= 1 | |= 1| | | |<

| | | |sup suph N h NL R L R
N Nh h

h f h f
κ α κ α

µ µ
α αµ µ

− −

− −− −≥

∆ ∂ + ∆ ∂∑ ∑|| || || ||  

 

1 2= .I I+  

For 1I  we have:  

 

1 ( )1 1| |= 1| |

= | | { (| |, )}||sup h NL R
N h

I h g y
κ α

µ
α µ

ω−

−− ≥

∆ ∂ ≤∑ ||  

 

( ) ( )1 1 1| |= 1| |

| | (| |, ) || || (| |, ) ||sup h N N
L R L R

N h

h g y h g y
κ α α

µ µ
α µ

ω ω−

−− ≥

 
≤ ∂ + + ∂ ≤ 

 
∑ ||  

 
| | | |

| | 1 1 | |

=0| |= 1 =0| |= 1

( )m N m m N m

m N m NI

C t dt C ln
α α

κ α κ α

α α

µ µ µ µ µ+ − − + − + −

− −

≤ ≤∑ ∑ ∑ ∑∫  

 

( ) ,
a N N

C lnµ µ−≤
 

 

where =
| |

y

y
ω  and = .

| |
h

y h

y h
ω

+

+
 To estimate 2I  we will apply the Leibniz 

formula:  
 

| |
| | ( )

2 ( )1 1| |= 1 =0| |=| |<

= | | ( (| |, )) ( ( ) ) || .sup
i y

h NL R
N m mh

I h C g y e

α
κ β α β ϕ ω

αβ µ
α βµ

ω χ ω− − −

−−

∆ ∂ ⋅ ∂∑ ∑∑||

 
In this case it is convenient to use the identity  

 

{ }| | ( )( ( )) ( ( ) ) =i y
h g y eβ α β ϕ ω

µ χ ω− −∆ ∂ ⋅∂  

 
| | ( ) | | ( )

= ( ) { ( ( ) )} ( ( ) ) { ( )}.
i y i y

h hg y h e e g y
β α β ϕ ω α β ϕ ω β

µ µχ ω χ ω− − − −∂ + ∆ ∂ + ∂ ∆ ∂  
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Since ( ), ( ), ( )ψ ω ϕ ω φ ω  satisfy conditions | ( ) | ,CωΨ ≤  ( ) | |h C h∆ Ψ ≤ , so to 

prove the inequality in Lemma 1 it suffices to get the following inequality  

 
| | | | | |

1
| | {| | cos(| | ( ))} || | | (ln ) ,

m m k a N N

h Ly h C y y C h
β α β κ

αµ φ ω µ µ− − + −+ ∆ ≤||  

for any = 0,1,2,... | |, = 0,1,2,...,| | | |,| | | | .m kα α β β α− ≤  

 

It is easy to see that | | | | | | | | 1| | | | | | | .k k
h y C y hα β α β− + − + −∆ ≤  Hence for any 

= 0,1,2,... | |, = 0,1,2,... | | | |,| | | |m kα α β β α− ≤  we obtain  

 
| | | | | |

1
| | {| | cos(| | ( ))} ||

m m k

h Ly h C y y
β α β

αµ φ ω− − ++ ∆ ≤||  

 
| | | | | | 1 1

| |

| | | | | | | | | |
m m k N

y h I

C h y h y y d y
β α βµ − − + − −

+ ∈

≤ + ≤∫  

 
1 | |

| | ( ln ) | | (ln ) .
m m k N a N N

C h C h
α κµ µ µ µ µ− + + − −≤ ≤  

 

Finally for the 2I  we have  

| |
| | ( )

2 ( )1 1| |= 1 =0| |=| |<

= | | ( ( )) ( ( ) ) ||sup
i y

h NL R
N m mh

I h C g y e

α
κ β α β ϕ ω

αβ µ
α βµ

χ ω− − −

−−

∆ ∂ ⋅∂ ≤∑ ∑∑||  

 

(ln ) .
a N N

Cµ µ−≤  

 
So statement of  Lemma 1 is proved. 

 

We obtain estimation from below for the Riesz means of the spectral 

decompositions of the function ( )f xµ . The asymptotic behavior of the 

spectral function ( , , )x y λΘ  and its Riesz means 

 

 

0

( , , ) = 1 ( , , ),

s

s t
x y d x y t

λ

λ

λ
λ

 
Θ − Θ 

 ∫
 

 

for large values of λ  plays an important role in the study of problems of 

convergence and summability of spectral decompositions. The investigation 
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of the spectral function ( , )

( )<

( , , ) = (2 ) ,
N i x y

A

x y e d
ξ

ξ λ

λ π ξ− −Θ ∫  is equivalent to 

that of the Fourier transform of the characteristic function of the set 

{ ( ) < 1}.A ξ
 
Of course, the behavior of ( , , )x y λΘ  depends essentially on the 

geometry of { ( ) < 1}.A ξ We say that an operator ( )A D  has a strictly convex 

symbol if ( )a ξ  is the principal symbol of ( ),A D and all the 1N −  principal 

curvatures of the surface { ( ) = 1}a ξ  are everywhere different from 0. If the 

surface { ( ) = 1}a ξ  is convex set, then we say that the elliptic differential 

operator ( )A D  has convex symbol. Note that in this case some of principal 

curvatures of the surface { ( ) = 1}a ξ  may be equal to zero. 

 

Let Ω  be an arbitrary domain on the unit sphere and let EΩ  be the 

set of points of the surface { ( ) = 1},a ξ  where the exterior normal vector 

coincides with .ω ∈Ω  We shall say that the point Eξ Ω∈  is a point of strict 

convexity if all the principal curvatures at this point are different from zero. 

We choose the domain Ω  so that all the points of the set EΩ  be points of 

strict convexity. Since the symbol ( )a ξ  is polynomial, such domain always 

exists. 

 

Lemma 2.  On the unit sphere there exists a domain Ω  such that for all 

, ,x y  for which = ( )/ | |, ,x y x y x yω − − ≠  we have the asymptotic 

representation for 0 < ( 1) / 2 :s N≤ −   

 
/ | | ( ) 1/2

( , , ) = ( )
s N m i x y

x y C e H
ϕ ωλ λ ω− −Θ

 
 

1/ 1/ ( 1)/2
0( ( | | ( ) | | ( ) ) ( )( | |)m s m N scos x y x y x yλ ψ ω φ ω ϕ ψ ω λ− − − + −− + − + − +  

 
1/ ( 3)/2

(1)( | |) ),
m N s

O x yλ− − + −+ −
 

 

where ( )H ω  is the Gauss curvature of the surface ( ) = 1a ξ  at the points of 

contact with the hyperplane orthogonal to ,ω
( )=1

( ) = ( , ),sup
a ξ

ψ ω ω ξ  

( ), ( )ϕ ω φ ω  are smooth functions depending on the ( ),A ξ full symbol of the 

operator.  
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 The proof of this Lemma may be conducted using the method of 
stationary phase as in the work (Ashurov (1981)), where the same result is 

proved for elliptic operators with convex symbol. Lemma 2 is generalization 

of the latter for an arbitrary elliptic differential operator ( )A D  with constant 

coefficients. 

 

Theorem 2.  Let 0> {1, }maxλ λ  and 
1/

= ,
mµ λ  then there exists a constant 

> 0B  such that  
1

2
1

| (0) | { , ( ) }, 0 .
2

N
s

s N
E f Bmax lnln ln sλ µ µ µ

−
− −

≥ ≤ ≤  

 

Proof. Using the asymptotical formula for ( , , )
s

x y λΘ  and passing to the 

spherical coordinates we have  

 

(0) =
s

E fλ µ  

/2 ( )1 32
0 12 2
1

/2 21

cos(( ( ) ) ( )
(1)(1 (ln ) ),

( ) ( )

b itN N
s s

N

N
s

sb

e z t f t
c t dtd O

H t

π µ ϕ ω
µ µ

π µ

ω ϕ ω
µ ω µ

ω ψ ω

+− −
− −

−

+
+

− Ω

+
+ +∫ ∫

 

where ( ) = ( ) ( ).zµ ω µψ ω φ ω+  Using Fubini's theorem we obtain (we have 

known that 0( ) > 0, ) :cψ ω ω≥ ∈Ω   

 
/21 12

1 0( )2 2

/2
1

cos( ( ) ) ( , )
(0) =

( ) ( )

bN N
s s

s it

s

b

tz f t
E f c t e dtd

H

π µ

µ µϕ ω
λ µ

π µ

ω ϕ ω
µ ω

ω ψ ω

+− −
− − −

Ω −

+
+∫ ∫  

 
3

2(1)(1 (ln ) ).

N
s

O µ
−

−
+  

 

If we denote the first summand by ,T  then by definition of the function 

( )f yµ  we shall have  

 

1 12
1

22 2
0

1

1
( ( ) ) .cos

( ) ( )

bN N
s s

s

b

T c d t z t dt
H

µµ ω ω ϕ
ω ψ ω

− −
− − −

Ω

≥ +∫ ∫  
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Since 2 1 1
= cos 2cos

2 2
γ γ+  we obtain  

1
11 2 2

2

1
2 ( ) ( )

N
b sN

s

s

b

c t
T d dt

H
µ ω

ω ψ ω

−
− −−

−

Ω

≥ +∫ ∫  

 
1

1
1 2 2

02
1 2

1

cos2( ( ) )
= .

2 ( ) ( )

N
sbN

s

s

b

t z tc
d dt S S

H

µ ω ϕ
µ ω

ω ψ ω

−
− −

−
−

Ω

+
+ +∫ ∫  

 

In the interior integral of 2S  integrating by part we have  

 
1

1
1 2

0 22
2

1

sin 2( ( ) )1
= |

2 ( ( ) ( ))( ) ( )

N
s

N
s b

bs

t z tc
S d

H

µ ω ϕ
µ ω

µψ ω ϕ ωω ψ ω

−
− −

−
−

Ω


+

−
+



∫  

 

32
1

2
0

1

1

2 sin 2( ( ) ) .
( )

b N
s

b

N
s

t z t dt
z

µ
µ

ω ϕ
ω

−
− −

− 
− 

− + 



∫  

 

Using the conditions 1(lnln ( )) = 1,cos µ β µ+ 2 0(ln ( ) ) = 1cos µ β µ ϕ+ +  we 

obtain  

3 32
1

2 2
2 0

1

1
= sin 2( ( ) ) .

( ) ( )

bN N
s s

s

b

S C d t z t dt
H

µµ ω ω ϕ
ω ψ ω

− −
− − −

Ω

+∫ ∫  

 

From the continuity of the functions ( )H ω  and ( )ψ ω  on Ω  it follows that 

1 2 3 4( ) , ( ) ,c H c c cω ψ ω≤ ≤ ≤ ≤  where , = 1,2,3,4jc j  are positive 

constants. By virtue of these conditions and of the definition of 

1 2( , , ),K x b bΩ  one can assert that  

 
1

1
2

2| | (1 (ln ) ).

N
s

S C µ
−

− −
≤ +  
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So we obtain for T  the following estimation from below:  
 

1 1 32
1

2 2 2
1 2

1

|| | | || (1)(1 ln ) .

bN N N
s s s

b

T S S C t dt Oµ µ
− − −

− − − −

Ω

≥ − ≥ + +∫ ∫  

Finally we have  

1

2

1
, = ,

2

1
( ) , .

2

N
s

N
clnln s

T
N

c ln s

µ

µ
−

−

−


≥ 
− ≠



 

 

Theorem 2 is proved.  Now Theorem 1 can be proved by similar way as in 

(Ashurov (1990)). 
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